3D Printing
News Videos Newsletter Contact us
Home / News / New 3D Printed Device Advances Human Tissue Modeling
revopoint

New 3D Printed Device Advances Human Tissue Modeling

May 23, 2025

Researchers at UW Medicine and the University of Washington have developed a new 3D-printed device that enhances tissue modeling capabilities. Named STOMP (Suspended Tissue Open Microfluidic Patterning), the fingertip-sized device allows scientists to create more complex tissue models with precise control over cell arrangement. The technology builds upon existing methods where cells are suspended in gel between posts, but offers improved ability to study multiple tissue types together.

3D Printed Device Advances Human Tissue Modeling
The tiny Suspended Tissue Open Microfluidic Patterning, or STOMP device, for tissue engineering studies. (Image Credit: Institute for Stem Cell and Regenerative Medicine)

The device works through capillary action to distribute different cell types in customized patterns within a suspended tissue. This approach enables researchers to recreate biological interfaces such as bone-ligament connections or combinations of fibrotic and healthy heart tissue. STOMP includes degradable walls, a feature that allows the device to be removed while leaving the engineered tissues intact.

Professors Nate Sniadecki and Ashleigh Theberge led the interdisciplinary team that developed the platform. “This method opens new possibilities for tissue engineering and cell signaling research,” said Theberge. “It was a true team effort of multiple groups working across disciplines.”

The researchers demonstrated STOMP’s capabilities through two experiments: one comparing contractile dynamics between diseased and healthy heart tissue, and another modeling the ligament connecting a tooth to its bone socket. The technology provides a solution to common challenges in tissue engineering, including the tendency of cells to pull away from mold walls.

The project received support from multiple National Institutes of Health grants and various research foundations. The research findings were published in the journal Advanced Science, with first authors Amanda Haack and Lauren Brown contributing to the paper alongside faculty members from chemical engineering, bioengineering, and oral biology departments.

Source: newsroom.uw.edu

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

University of Bristol Researchers are Testing 3D-Printed Structures for Earthquake Resistance

University of Bristol researchers are testing 3D-printed structures for earthquake resistance using a specialized shaking table. The experiment, conducted at the university's Soil... read more »

Construction
University of Bristol Researchers are Testing 3D-Printed Structures for Earthquake Resistance

3D Printing Technology Tested on Historic Bridge in Great Barrington as Potential Solution for Aging Infrastructure

Researchers from UMass Amherst and MIT have successfully applied 3D printing technology to repair a bridge in Great Barrington, Massachusetts. The test utilized... read more »

3D Printing Metal
3D Printing Technology Tested on Historic Bridge in Great Barrington as Potential Solution for Aging Infrastructure

Neighborhood 91 Advances Additive Manufacturing Hub Initiative

The Pittsburgh region is strengthening its position in advanced manufacturing with the development of Neighborhood 91 (N91), an additive manufacturing campus adjacent to... read more »

News
Neighborhood 91 Advances Additive Manufacturing Hub Initiative

Sakuu Receives Fast Company Award for Dry Electrode Printing Technology

Sakuu has been named a winner in Fast Company's 2025 World Changing Ideas Awards for its Kavian dry electrode printing process. The company's... read more »

Electronics
Sakuu Receives Fast Company Award for Dry Electrode Printing Technology

Vietnam Sets Global Record with 3D-Printed Femur for 8-Year-Old Cancer Patient

Vinmec Healthcare System in Vietnam has achieved a medical milestone by successfully implanting the world's first fully 3D-printed titanium femur in an eight-year-old... read more »

Medical
Vietnam Sets Global Record with 3D-Printed Femur for 8-Year-Old Cancer Patient

Qatar Launches World’s Largest 3D-Printed Construction Project to Build New Schools

Qatar has begun construction on two large 3D-printed schools as part of a broader project to build 14 new educational facilities. Each 3D-printed... read more »

Construction
Qatar Launches World's Largest 3D-Printed Construction Project to Build New Schools

Stanford Researchers Develop New Method for 3D Printing Complex Vascular Networks

Stanford University researchers have created a computational platform that designs and 3D prints complex vascular networks needed for bioprinted organs. The system, published... read more »

Bioprinting
Stanford Researchers Develop New Method for 3D Printing Complex Vascular Networks

Rocket Lab Reserves Two Ultra Large-Format Metal 3D Printers from Nikon SLM Solutions

Rocket Lab has signed a Memorandum of Understanding with Nikon SLM Solutions to reserve two upcoming ultra-large format metal additive manufacturing systems. The... read more »

3D Printing Metal
Rocket Lab Reserves Two Ultra Large-Format Metal 3D Printers from Nikon SLM Solutions

3D-Printed Clay Bug Hotel Provides Sustainable Habitat for Insects

French artist and designer Raphaël Emine has created a new project called "Les Utopies Entomologiques" (Entomological Utopias) that combines art with environmental conservation.... read more »

Environmental
3D-Printed Clay Bug Hotel Provides Sustainable Habitat for Insects

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing